If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-99=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| -6.58=b+5.62 | | n/10=-12 | | 2(x+5)=6X+4x-2+12 | | A=30-p | | 8-2/3q=q | | 2Wx(W+5)=40 | | x/3=x-2/3 | | x2-10x-7=0 | | 10+(2x-8)=x+7 | | 6x-23+x-5=3x+2 | | -8m+4=4(7-3m) | | 9+2x=-(-5+2x) | | -38+7x=-4(8x-8)+4x | | -90-pp=(-5) | | 18+w=23 | | -7(8+3m)=40+3m | | 287=156-w | | 2(1+4m)=35-3m | | k-(20)k=10 | | -4=9k-40 | | -16+a-3a=-2a+4a | | 5x+35=2x+92 | | 3(3x+1)=6x-3 | | n+0.4n=3.4 | | x+27+20x=67 | | x+27+20×=67 | | 3+4(4m-4)=-125 | | -2+10-8-15=x+x+x | | 2.2y+3.2=3y | | 200=-7(1-6n)-3 | | 1xx3+20=2x1x+37 | | (2x-6)+(5x+3)=46 |